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Forskning

Background/Objective: Impaired fasting glycemia (IFG) reflects an intermediate hyperglyce-

mia in the fasting state. Which fasting glucose level that actually is associated with impaired

insulin-glucose homeostasis in children and adolescents with obesity is unknown. The aim of

this study was to investigate how insulin and glucose homeostasis in children and adolescents

with obesity in Sweden varies within different fasting glucose levels in the non-diabetic

range.

Subjects: The subjects, n = 333, were divided into three groups based on their fasting glu-

cose level. Normoglycemic range: up to 5.5 mmol/L (n = 268); the exclusive range the

American Diabetes Association (ADA) has for IFG diagnosis: 5.6-6.0 mmol/L (n = 44); and

IFG according to World Health Organization: 6.1-6.9 mmol/L (n = 21). The three groups

were of similar age, degree of obesity, fasting insulin levels, sex, and migrant background

distribution.

Methods: We used an insulin-modified frequent sample intravenous glucose tolerance test to

study acute insulin response (AIR), insulin sensitivity (SI), and disposition index (DI) in children

and adolescents with obesity. The main outcome measures were AIR, SI, and DI in three groups

based on fasting glucose level.

Results: Fasting glucose levels ranging from 5.6 to 6.0 mmol/L were not associated with a lower

AIR, SI, or DI compared with the normoglycemic range. However, glucose levels ranging from

6.1 to 6.9 mmol/L were associated with lower AIR and lower DI, but no statistical differences in

SI were present.

Conclusions: IFG in the exclusive ADA range was not associated with disturbed glucose metab-

olism. This suggests that IFG contributes to adverse metabolic profile in children differently to

what has been described previously in adult obese populations.
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1 | INTRODUCTION

Impaired fasting glycemia (IFG) reflects an intermediate hyperglyce-

mia in the fasting state and is considered a prediabetic state.1,2 IFG

is highly prevalent in children and adolescents with obesity,3 even

though large international differences are evident.4 At present, two

different definitions of IFG are used in parallel. In 1997, the Ameri-

can Diabetes Association (ADA) announced IFG, with the choice of

6.1 mmol/L (110 mg/dL) as the lower cutoff level, based in large part

on epidemiological data on the risk of microvascular and macrovas-

cular complications.5 In 2003, ADA reduced the lower fasting plasma

glucose cut point to define IFG to 5.6 mmol/L (100 mg/dL), in part

to ensure that prevalence of IFG was similar to that of IGT.1 How-

ever, the World Health Organization (WHO) did not adopt this

change in the definition of IFG.2 In adults, IFG has been associated

with increased risk for cardiovascular disease, cancer, and premature

death even in the absence of the development of type 2 diabetes

(T2D).6–8
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IFG is associated with reduced hepatorenal insulin sensitivity,

causing higher hepatic endogenous glucose production, combined

with insufficient basal insulin secretion, resulting in elevated fasting

glucose levels.9–12 Furthermore, first-phase insulin secretion has been

shown to be impaired in adolescents and adults with IFG,12–14 corre-

sponding to a 49% decline in β-cell function relative to insulin sensi-

titvity.15 Second-phase insulin secretion and peripheral insulin

resistance in skeletal muscles seems to be normal in subjects with

IFG.9,11,13,14 However, some physiological differences have been

observed across different populations, indicating that the pathogene-

sis of IFG may differ in different ethnic groups.9,12

The presence of IFG in adults increases the risk of T2D. The cumu-

lative incidence over 6 to 9 years has been reported with a range of

29% to 39%.16–18 We have previously shown, in a cohort of children

and adolescents with obesity and relatively high presence of IFG in

Sweden, that IFG in the exclusive interval provided by ADA, that is, a

moderately elevated fasting glucose (5.6-6.0 mmol/L) did not affect the

risk of developing T2D. On the other hand, children and adolescents

with obesity and a fasting glucose of 6.1 mmol/L or above (WHO defi-

nition of IFG) had almost four times higher risk of developing T2D in

young adulthood than normoglycemic children with obesity19 who, in

turn, had 24 times higher risk than population-based controls. After a

median follow-up period of 7 years, approximately 12% with IFG WHO

had developed T2D, which, although a high-risk number, is much lower

than seen in adults (see above). Thus, IFG in children and adolescents in

general and especially IFG according to ADA does not seem to increase

the risk of T2D to the same extent as in adults.

The aim of this study was to investigate how insulin and glucose

homeostasis in children and adolescents with obesity in Sweden

varies within different fasting glucose levels in the non-diabetic range.

2 | METHODS

2.1 | Subjects

Inclusion criteria: Children and adolescents from 10 to 18 years of

age, who had obesity and have undergone an intravenous glucose

tolerance test at the National Center of Childhood Obesity in Stock-

holm, Sweden between May 1997 and May 2008, n = 371. Excluded

criteria were incomplete tests (eg, consecutive insulin samples with

hemolysis), n = 33; subjects on metformin or fasting glucose values

in the diabetic range (≥7.0 mmol/L), n = 5, Figure 1. The study was

approved by the regional Ethics Committee in Stockholm, Sweden

(No. 2016/922-31/1).

Anthropometric assessments were carried out by pediatric nurses

trained in endocrinology. A calibrated wall-mounted stadiometer was

used to measure height, and a calibrated electronic scale was used for

weight measurements. Body mass index (BMI) was calculated by

dividing the weight in kilograms by the height in square meters

(kg/m2). Age- and gender-specific BMI cutoff levels recommended by

International Obesity Task Force were used to define obesity and

severe obesity.20 Pubertal status was classified according to Tanner21

by a pediatric endocrinologist. Tanner stages 4 and 5 were pooled in

the analyses.

2.2 | Intravenous insulin-modified glucose
tolerance test

Glucose/insulin metabolism was measured with an intravenous fre-

quent sampling glucose tolerance test performed in the morning after

fasting overnight. For blood sampling and infusion of glucose and

insulin, one intravenous catheter was inserted in the antecubital vein

of each arm. Fasting glucose and insulin were measured at the follow-

ing time: −15 minutes, −10 minutes, and −5 minutes. At time

0 minutes, 0.3 g glucose per kg body weight was administered intra-

venously during 1 minute. At time 20 minutes, 0.02 U insulin

(Actrapid; Novo Nordisk Scandinavia AB, Malmö, Sweden) per kg

body weight was administered as an intravenous bolus dose. Venous

blood samples for determinations of glucose and insulin were

obtained at t = −15, −10, −5, 0, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18,

20, 22, 24, 25, 27, 30, 35, 40, 50, 60, 70, 90, 100, 120, 140, 160, and

180 minutes.22 Glucose was analyzed with a bedside instrument

(HemoCue AB, Ängelholm, Sweden), and insulin was analyzed at the

Karolinska University Hospital Laboratory, Sweden.

The acute insulin responsiveness (AIR) to glucose and the insulin

sensitivity index (SI) were calculated from the glucose and insulin

values using the minimal model computer program (MINMOD Millen-

nium, 2003).23 The acute insulin responsiveness to glucose assesses

the capability of insulin secretion after the glucose injection. The insu-

lin SI is a measure of the ability of insulin to enhance glucose disposal

and inhibit glucose production. The disposition index (DI) was calcu-

lated as the product of the acute insulin responsiveness to glucose

and the insulin SI.

2.3 | Definitions

The subjects were divided into three groups based on their fasting

glucose level; up to 5.5 mmol/L corresponding to normal fasting glyce-

mia (NFG), 5.6 to 6.0 mmol/L corresponding to the exclusive interval

for IFG provided by ADA, and 6.1 to 6.9 mmol/L corresponding to

IFG according to WHO.

Data on all participants were registered in the Swedish Childhood

Obesity Treatment Register (BORIS: www.e-boris.se), and data of

Scandinavian origin as defined previously19 were retrieved from

FIGURE 1 Flowchart of included subjects with insulin-modified

frequents sampling glucose tolerance test (IMFSGTT) performed
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Statistics Sweden, a governmental agency that collect and provide

official statistics.

2.4 | Statistics

Descriptive statistics are presented with proportions or means �
SD. Differences between the glucose categories regarding descriptive

measures (ie, anthropometric and demographic) were evaluated with

ANOVA or χ2 test. The outcome AIR, SI, and DI were non-normally dis-

tributed and therefore transformed with the natural logarithm. These

variables were analyzed with general linear model adjusted for sex,

age, migrant background, and degree of obesity. Adjusted least square

means were retrieved for illustrations. A P-value <0.05 was consid-

ered to be statistically significant. All analyses were performed in SAS

statistical software (version 9.4, Cary, North Carolina).

3 | RESULTS

In total, 333 children and adolescents (53.5% girls) fulfilled the criteria

for inclusion. The mean � SD age was 14.8 � 2.0 years, BMI stan-

dard deviation score (SDS) 3.09 � 0.39, and 26.7% were of migrant

background. The majority of the individuals were in Tanner stage 4/5.

The fasting glucose ranged between 3.4 and 6.9 mmol/L with an aver-

age of 5.1 � 0.6 mmol/L. NFG was present in 268 patients, the exclu-

sive IFG interval provided by ADA (5.6-6.0 mmol/L) was found in

44 patients, and 21 patients had IFG according to WHO

(6.1-6.9 mmol/L). The three groups, based on fasting glucose levels,

were of similar degree of obesity and age, sex, and migrant back-

ground distribution. The groups differed by definition in the fasting

glucose levels but had similar fasting insulin levels (Table 1). The

excluded subjects had 0.22 higher BMI SDS, P = 0.0008, but were of

similar age (P = 0.25), had similar fasting glucose (P = 0.26), and sex

distribution (P = 0.91).

In models adjusted for sex, age, migrant background, and degree

of obesity children and adolescents with obesity and fasting glucose

levels ranging from 5.6 to 6.0 mmol/L had similar AIR, SI, and DI com-

pared with NFG individuals. However, individuals with fasting glucose

levels ranging from 6.1 to 6.9 had 48% lower AIR and 57% lower DI

(both P < 0.0001) compared with the NFG group, and 39% lower AIR

(P = 0.0048) and 51% lower DI (P < 0.0001) compared with the group

of children with fasting glycemia of 5.6 to 6.0 mmol/L. There was a

17% lower SI in subjects with fasting glucose levels of 6.1 to 6.9 com-

pared with NFG, but no statistical difference in SI was observed

between any of the groups (all P > 0.1). This is illustrated in Figure 2.

TABLE 1 Descriptive data population and comparative statistics between the fasting glucose category groups

Total n = 333 NFG n = 268
5.6–6.0 mmol/L
n = 44

6.1-6.9 mmol/L
n = 21

ANOVA/
χ2 P

Girls 53.5% 54.1% 45.5% 61.9% 0.41

Obesity/severe obesity 29.4/70.6 28.4/71.6 36.4/63.4 28.6/71.4 0.56

Migrant background 26.7% 24.3% 36.4% 38.1% 0.12

BMI SDS 3.09 � 0.39 3.09 � 0.40 3.04 � 0.35 3.14 � 0.37 0.60

Age (y) 14.8 � 2.0 14.8 � 2.0 14.3 � 1.7 14.9 � 1.6 0.20

Pubertal status by Tanner %
(1/2/3/4-5/missing)

3.6/8.4/7.2/63.7/17.1 3.7/8.2/7.8/65.3/14.9 2.3/9.1/6.8/50.0/31.8 4.8/9.5/0.0/71.4/14.3 0.26

BMI (kg/m2) 36.4 � 5.4 36.5 � 5.6 35.3 � 4.0 37.6 � 5.6 0.26

Glucose (mmol/L) 5.1 � 0.6 5.0 � 0.4 5.8 � 0.1 6.3 � 0.3 <0.0001

Insulin (pmol/L) 119.6 � 71.4 116.5 � 72.2 133.4 � 71.9 131.2 � 57.1 0.26

Abbreviation: BMI, body mass index.

FIGURE 2 Geometric means of A, acute insulin response (AIR); B, insulin sensitivity (SI); and C, disposition index (DI) by fasting glucose category

adjusted for sex, age, migrant background, and degree of obesity. Interval represent 95% confidence limits. Normal fasting glycemia (NFG) vs
5.6-6.0 mmol/L: AIR, P = 0.160; SI, P = 0.892; DI, P = 0.165. NFG vs 6.1-6.9 mmol/L: AIR, P < 0.0001; SI, P = 0.135; DI, P < 0.0001. 5.6-6.0 vs
6.1-6.9 mmol/L: AIR, P = 0.005; SI, P = 0.174; DI, P < 0.0001
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Hence, the lower DI in subjects with the highest fasting glucose level

was primarily a result of impaired AIR and not increased peripheral

insulin resistance.

Replacing age with Tanner staging in the adjusted model in the

subgroup with reported pubertal status (n = 276, 83% of the individ-

uals), did not attenuate the results for AIR or DI. However, it

revealed that fasting glucose levels of 6.1 to 6.9 mmol/L had lower SI

than 5.6 to 6.0 mmol/L, geometric mean 1.83 vs 2.62 mU/L-(1min/1),

P = 0.03, but was not statistically significant to NFG sub-

jects, P = 0.09.

4 | DISCUSSION

Insulin resistance in combination with insufficient insulin secretion

is cornerstones in the natural history of T2D. IFG is currently

defined with different cutoff values by ADA and WHO,1,2 but no

specific recommendations for children are available. The present

study was undertaken to compare AIR, SI, and DI, in children and

adolescents with obesity divided into three groups depending on

their fasting glucose levels. We found that fasting glucose levels

ranging from 5.6 to 6.0 mmol/L, that is, the additional range ADA

has for IFG diagnosis, were not associated with a lower AIR, SI, or

DI compared with children in the normoglycemic range. However,

glucose levels of 6.1 to 6.9 mmol/L, the WHO IFG range, were asso-

ciated with lower first phase insulin secretion and lower DI. In previ-

ous studies in youths, impaired insulin sensitivity has not been

found in the prediabetic range of 5.6 to 6.9 mmol/L compared with

lower glucose levels.13,15

It is unclear why IFG in the ADA range predicts diabetes in

adults but not in children. In adults, IFG is also associated with

increased morbidity and mortality independently of development of

T2D.6,24 However, the causal relationship between moderately ele-

vated glucose levels and morbidity can be questioned. Subjects with

mutations in the glucokinase gene (MODY 2) display elevated fast-

ing glucose levels in the IFG and diabetes range without any

increased risk for diabetes-related comorbidities and without any

treatmment.25 Thus, given that the clinical information obtained

from patients with glucokinase mutations is relevant for IFG, it is

not the elevated fasting glucose levels per se, but factors causing

them that are of importance as drivers of morbidity and mortality.

Hence, IFG could be considered as a marker of disturbed metabo-

lism in adults, and it is possible that this marker is less important in

children. In addition, T2D can be divided in different subgroups,26

and it is possible that IFG has different prognostic value for differ-

ent subtypes.

Impaired glucose tolerance (IGT), another prediabetic stage, has

also been associated with impaired first-phase insulin secretion,27 but

also within the normal glucose tolerance range, impaired insulin secre-

tion and insulin sensitivity may be present.28 It has also been observed

that high fasting glucose precedes the development of IGT in

adolescents.29

The major reason why it is important to define prediabetes in chil-

dren and adolescents is to identify subjects with high risk to develop

T2D. It is urgent to prevent T2D in adolescents as it is a devastating

disease in young individuals.30,31 We have previously shown that chil-

dren and adolescents with obesity and fasting glucose levels of 5.6 to

6.0 mmol/L do not have higher risk to develop T2D as young adults

than those with NFG.19 This is in agreement with the results in the

present study where we can demonstrate that the glucose homeosta-

sis is not disturbed to a larger extent in children and adolescents with

fasting blood sugar in the range 5.6 to 6.1 mmol/L than in children

with NFG. Thus, our present results confirm that the risks associated

with IFG in adults are becoming evident in children first when fasting

glucose levels reach 6.1 mmol/L. Based on the results in the present

and our previous study,19 slightly elevated fasting glycemic levels in

children and adolescents with obesity should probably not be consid-

ered as prediabetic levels but the search for more specific diabetes

risk markers have continue as this group has a markedly higher risk to

develop T2D early in life.19

The limited peripheral insulin resistance in subjects with IFG,

observed in the present study, is consistent with some,13,14 but not

all, previous studies.12,32 In a large sample of non-diabetic middle age

subjects, Festa et al found a lower insulin sensitivity in subjects with

IFG (6.1-7.0 mmol/L) than in NFG.32 Hence, the importance of periph-

eral insulin resistance in IFG might differ between pediatric and adult

populations. Recently, different non-diabetic fasting glucose levels

have been shown not to differ in the risk of cardiovascular disease in

adults.33

Even though we have used a sophisticated method to measure

glucose-insulin metabolism, there are a number of limitations that

should be noted. First, we defined our groups based on fasting glu-

cose from 1 day of measurement, and because there are some vari-

ability in fasting glucose,34 this might have resulted in some overlap

between the groups. Sweden has a higher prevalence of elevated glu-

cose levels among children than other countries4,35,36, and despite

that we have a multiethnic population in Sweden, these results need

to be confirmed in other populations of children and adolescents with

obesity. Second, it would have been favorable to also study how pre-

diabetic levels of HbA1c are associated with glucose metabolism, but

unfortunately, that data were only available for a small subset of the

participants. However, the use of HbA1c as a prediabetic indicator in

the pediatric population with obesity needs to be further studied.

While some question the use of HbA1c in the pediatric population,37

we have previously shown that prediabetic levels in this population

predicts T2D.19

5 | CONCLUSION

In obese children and adolescents, IFG according to WHO

(6.1-6.9 mmol/L) but not within the exclusive ADA range

(5.6-6.0 mmol/L) was associated with a lower acute insulin response

than in children with normal fasting glucose levels. In combination

with our previous finding, that fasting glucose level of 5.6-6.0 in the

pediatric obesity population does not contribute to increased T2D risk

in young adults, our results suggest that the IFG contribute to future

disease differently in the pediatric vs the adult population. This is of

importance when risk for future T2D is estimated in obese children

and adolescents.
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